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Abstract

The relationship between retention indices and molecular descriptors of alkanes is established by two-step multivariate
adaptive regression splines (TMARS). TMARS combines linear regression with multivariate adaptive regression splines
(MARS). It is demonstrated for the present data set that using linear regression or MARS modeling alone causes lack of fit.
TMARS avoids lack of fit and appreciably improves the prediction ability for the model. The use of this combined approach
permits the development of additional understanding of the adaptive nature in MARS modeling.
   2003 Elsevier Science B.V. All rights reserved.
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1 . Introduction methods to set up the model; (3) to evaluate the
model built. This study is concerned with the latter

Constructing quantitative relationships between two steps.
molecular structure and gas chromatographic reten- Linear methods, such as multiple linear regression
tion indices has been studied repeatedly[1–4]. The (MLR), partial least squares and principal component
main goal is to develop a suitable model to predict regression are the more evident ones when searching
the retention behavior and to explain the molecular for a relationship between molecular structure and
mechanisms in gas chromatography. gas chromatographic retention. The descriptors are

The common approach for building a structure– included into the multiple linear regression model
retention relationship consists of the following steps: using variable selection procedures such as best
(1) to develop (or to select) the descriptors for the subset, backward and stepwise selection[5,6] or
molecular structure; (2) to use proper mathematical more sophisticated ones that use genetic algorithms

and simulated annealing[7,8]. Then the multiple
correlation coefficientR and F-test value are com-*Corresponding author. Tel.:132-2-477-4737; fax:132-2-
puted to evaluate the model built with the selected477-4735.

E-mail address: fabi@vub.vub.ac.be(D.L. Massart). descriptors. IfR is very close to unity (for instance
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R.0.99) and theF-test value is larger than several stated above, the exact form off(x) is not known.
hundreds or thousands, the model is regarded as very The goal of regression analysis is to build a function

ˆgood. However, many examples show that there can f(x) based on the available data set as an approxi-
still be unacceptably large residuals for some chro- mation tof(x) that can perform well over the domain
matographed substances compared to measurement of interest.
errors. This means that there is a lack of fit for the
model. One can increase the fit by including more 2 .1. Multiple linear modeling
descriptors into the model, but this does not give a
better prediction. Indeed, when the root mean square The most prevalent way to approximate the rela-
error of cross validation (RMSECV) serves as a tionship is to use a linear function:
criterion to determine the model dimension, it will be

ty 5 f(x)5 a 1 x a1 e (2)0found that more descriptors may lead to poorer
prediction performance. where a is the intercept,a the p 3 1 vector of0One possible reason for lack of fit is that the regression coefficients,x the p 31 descriptor vector,
available descriptors give an incomplete description p the number of descriptors and the superscriptt
of molecular structure. Thus, seeking more informa- stands for transpose. If there is more than one
tive descriptors for chemical structure has long been compound,
the aim of many researchers, and has led to the

y5 f(X)5 1a 1Xa1 e (3)development of many molecular descriptors. 0

Another reason is that the linear model has limited
where y is the n 31 retention index vector fornflexibility to characterize the relationship between
compounds,X is the correspondingn 3 p descriptormolecular structure and gas chromatographic reten-
matrix, 1 is the vector of ones, ande is the errortion index. It is the simplest and the most popular,
vector.but nonlinear methods are more general. There are

In this study, the forward stepwise algorithm istwo well-known methods, which have been used to a
used to select the descriptors included in the model.large extent in various disciplines during the last

decade. One is neural networks[4,9]. The other is
2 .2. MARS modelingmultivariate adaptive regression splines (MARS)

[10–14]. While neural networks have been studied
MARS uses left-sided (Eq. (4)) and right-sidedextensively in chemometrics, this is not the case for

(Eq. (5)) truncated power functions as spline basicMARS.
functionsThe aim of this study is to develop a new strategy

qof MARS modeling which is called two-step MARS (t 2 x) , if x , t,2 qb (x 2 t)5 [2(x 2 t)] 5 (4)H(TMARS). TMARS attempts to build a model q 1 0, otherwise
between retention index and molecular descriptors
based on linear modeling in a first step. In a second

qstep, when it is found that the model shows lack of (x 2 t) , if x . t,1 qb (x 2 t)5 [ 1 (x 2 t)] 5 (5)fit, splines are added to the model. Hq 1 0, otherwise

whereq ($0) is the power to which the splines are
raised in order to manipulate the degree of smooth-2 . Methods
ness of the resultant function estimate. Whenq 5 1,
which is the case in this study, a simple linear spine

The general model to be constructed is:
is applied,t is called the knot location.Fig. 1 shows
a pair of spline functions whenq 5 1 at t 50.5.y 5 f(x)1 e (1)

For model (3), a total ofnp pairs of spline basic
functions, h[ 1 (x 2 t)] , [2(x 2 t)] j corre-where y is the retention index,e the measurement j 1 j 1

sponding to the knot locationt 5 x (i 51, 2, . . . ,n,error andx a vector of molecular descriptors. As ij
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Fig. 1. A pair of one-sided spline basis functions (0.52 x) and (x 2 0.5) .1 1

j 5 1, 2, . . . , p), wherex is the jth descriptor in Eq. into the model. The pair of basis functions is the onej

(3). that fit the model best at the current stage. When the
The basis functions for MARS consist of either model has become excessively large and obviously

one single spline function or the product of two (or overfits the data, MARS then uses a ‘‘one at a time’’
more) spline functions of different descriptors. The backward stepwise strategy to prune the basis func-
fundamental idea of MARS is to use the combination tions. The generalized cross validation (GCV) is the
of basis functions to approximate model (1) mean squared residual of fit to the data divided by a

penalty to account for the increased model complexi-
M

ty. This criterion is used to avoid an excessive
f̂ (x)5 a 1O a B (x) (6)M 0 m m number of spline basis functionsm51

n
where a is the coefficient of the constant basis 20 ˆO [ y 2 f (x )]i M i1function,B (x) the mth basis function which may be m51m ] ]]]]]GCV(M)5 ? (7)2a single spline function or product (interaction) of n [12C(M) /n]
two (more) spline basic functions,a the coefficientm

of the basis function andM the number of basis whereC(M) is a complexity penalty function which
functions included into the model. increases as the number of terms. It is defined as

MARS first uses a ‘‘two at a time’’ forward
C(M)5M 1 dc (8)stepwise strategy to select a pair of basis functions
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M is the number of terms in Eq. (6),c is the number or
of basis functions that consist of spline functions (or mN i

2nonlinear terms). In this study, the parameterd 5 2, ˆOO(y 2 y ) 5ij i
i51j51the maximum interaction order of the spline func-

mtions is restricted to 3. N i N
2 2As more spline basis functions are included into ¯ ˆ ¯OO(y 2 y ) 1Om (y 2 y ) (10)ij i i i i

i51j51 i51the model, the bias of model estimates decreases, but
the variance increases. The GCV could supply a whereN stands for the total number of different
suitable data-dependent estimate of future prediction objects, y , y , . . . , y are m replicate ob-i 1 i 2 im iierror if the penalty function is well defined and this ˆservations of theith objectx (i 51, 2, . . . ,N), yi i
prediction error estimate is minimized with respect to ¯and y are the estimate and the mean of thesemi i
the parameters of the strategy. In summary, MARS observations, respectively.
yields a model for the response that automatically 3. A test for lack of fit is carried out with theF-ratio
selects the spline basis functions included into the of mean squares for lack of fit (the sum of squares
final model. This model balances GCV against the of lack of fit divided by its number of the degrees
bias of model estimates. Further details on MARS of freedom) and mean squares for pure error (the
modeling are given in Ref.[10]. sum of squares of pure error divided by its

number of the degrees of freedom). If the test is
significant, the model is inadequate. Go to the2 .3. A two-step modeling procedure
second step. If not, the linear model is adequate
and the second step is not required.As stated above, the linear model fits well the

relationship between retention index and molecular
descriptors, but some residuals are still too large. In 2 .3.2. Second step
other words, the relationship appears highly linearly 1. For Eq. (9), use forward stepwise procedure to
correlated, but the linear model shows some lack of determine whether some descriptorsx (i 5 1,ni
fit. The reason why some residuals are too large may 2, . . . , L) should be replaced by a pair of one-
be that some intrinsic relation hidden in the high sided linear splines [6(x 2 x )] ( j 5 1, 2, . . . ,n jn 1i i
dimensional data may not be characterized by linear n). Thus the following equation is obtained
function. In order to deal with such a problem, a

K

two-step modeling procedure based on linear regres- f̂ (x)5 c 1Oc g (x) (11)1 0 k k
sion and MARS was developed. k51

The procedure is as follows. where the basis functiong (x) is either one of thek

descriptors x or a pair of the spline basicni2 .3.1. First step functions [6(x 2 x )] .n jn 1i i
1. The multiple linear model is constructed as 2. On the basis of Eq. (11), a combined model of

described in Section 2.1 form
L ˆ ˆ ˆf (x)5 f (x)1 f (x)cf 1 ff (x)5 a 1Oa x (9)L 0 n ni i

i51 K M

5 c 1Oc g (x)1O a B (x) (12)0 k k m mwherex is then th descriptor,L is the number ofn i k51 m51i

descriptors included into the model.
where2. The residual sum of squares of model (9) is

Mdecomposed into pure error sum of squares and
f̂ (x)5O a B (x) (13)lack of fit sum of squares: f m m

m51

Residual Pure error Lack of fit can be fit to the data by applying the ‘‘two at a5 1sum of squares sum of squares sum of squares time’’ forward stepwise procedure. The coeffi-
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cients c in Eq. (12) are jointly adapted alone retention indices at a fixed temperature of 333 K.k

with the parameters of the resulting model in The model used is as follows[15]:
forward stepwise procedure. b

3. The equation can be rewritten as ]I 5 a 1 (15)T
M1K where I is the retention index of the compound

f̂ (x)5 b 1O b H (x) (14)cf 0 j j measured at temperatureT (K), a and b are con-
j51

stants.Fig. 2a shows one result obtained. For most
compounds, the linear regression lines fit the re-whereH (x) is the basis functiong (x) or B (x). Aj j j
tention indices very well.‘‘one at a time’’ backward stepwise deletion is

However, mistakes both in data transformationapplied to Eq. (13). Both basis functionsg (x) andj
and in the reference sources may appear in someB (x) can be deleted within this stage.j
retention indices. In order to estimate the variance ofFor more details on forward and backward step-
the error and test lack of fit for consequent modeling,wise procedures see Ref.[10].
the retention indices of 14 alkanes are selected as aThe first step tries to use a linear function to
repeat set. For each compound in this set, thedescribe the relationship between the response and
retention indices at different temperatures are par-descriptors. Of course other regression subset selec-
titioned into 2–4 groups. Each group yields ation strategies can be used to build the model. If the
regression line. The retention indices predicted atlinear model shows lack of fit, the second step is
333 K by these lines are considered replicate ob-started. In that second step a descriptor in the linear
servations of this compound.Fig. 2b shows anmodel is replaced by a pair of spline basic functions,
example. In this way retention indices of in total 173if the resulting model is improved. Then the usual
alkanes were collected, out of which 149 are differ-MARS procedure is completed based on the resulting
ent alkanes and 24 are repeat measurements of thesemodel. The descriptors that remained in Eq. (8) after
alkanes. The 173 retention indices are listed inthe deletion procedure are important factors and are
Appendix A.needed to make the model accurate.

Two kinds of descriptors are calculated for theIt should be pointed out that the final TMARS
molecules, namely topological and quantum chemi-model has the form of what is called ‘‘semi-paramet-
cal descriptors. The first are the Kier and Hall[16]ric model’’ in Ref. [10], but that the TMARS

1 2 3 3molecular connectivity indicesx, x, x , x ; kappaprocedure is different from the semi-parametric p c
0 1 2 3indices[17] k, k, k, k ; path count indices[18] p ,modeling presented there. 1

p , p , p ; walk count indices[18] w , w , w , w ;2 3 4 1 2 3 4

path/walk count indices[18] pw , pw , pw , pw ,1 2 3 4

the indices proposed and used by Schultz et al.
[19,20]: molecular topological index (MTI); the3 . Data
principal eigenvalue of the distance matrix (PED);
the principal eigenvalue of the adjacency-plus-dis-This data set contains retention indices of 149
tance matrix (PEAD); the logarithm of determinantalkanes including straight chain and branched al-
of the adjacency-plus-distance matrix (DET), thekanes, which were measured on squalane as station-
indices proposed by Xu et al.:Yx and EAID [21,22].ary phase and at a column temperature of 333 K.
The quantum chemical descriptors are: heat ofThey were collected and collated from 1587 re-
formation (HEAT), electronic energy (ELE), core–tention index records in a GC retention index
core repulsion energy (CORE), dipole momentdatabase[15]. The 1587 retention indices of alkanes
(DIP), ionization potential (ION), LUMO energywere measured on the same column of squalane, but
(LUMO). The six quantum chemical descriptorsat different temperatures and in different laborator-
were calculated using the MOPAC method in theies. Thus the calibration of temperature for some
Chem3D software. The software performed geome-compounds is necessary. We used regression between
try optimization, followed by quantum chemicalthe retention index and temperature to compute
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Fig. 2. (a) The regression line of the retention indices at different temperatures for 2,2,3-trimethyl-pentane. The vertical coordinate of the
point ‘‘*’’ is the retention index used in the data set. (b) The regression lines of the retention indices at different temperatures for
neopentane. The vertical coordinates of the points ‘‘*’’ and ‘‘s’’ are repeat observations (retention indices) of neopentane used in the data.

calculations according to the semiempirical AM1 (7)) as the criterion, the following linear model is
˚method. The solvent probe radius used is 1.4 A, obtained:

which is the default value for water. The routines for
I 5 74.871171.19x 2 4.13x 1 6.03x 21.82x1 3 7 8calculating the other 26 topological indices were

programmed using MATLAB language of version 1 20.64x 1 9.07x 1 2.07x 2 53.21x11 12 16 20
5.3.

2 0.17x 1 16.03x 2 187.42x 1 164.45x21 23 24 25All the descriptors are labeledx –x according to1 32

the order in which they are described in the above 2 0.64x 2 0.05x 2 25.72x 1 153.87x27 29 30 31

paragraph.
1 42.57x32

2R 5 0.9994; F 5 14051; s 5 5.09 (16)

4 . Results and discussion 2whereR is the multiple correlation coefficient,s is
the standard error andF is the F-ratio for overall

34 .1. Multiple linear regression—step 1 regression. In total, 17 descriptors,x(x ), x (x ),1 p 3
2 3
k(x ), k(x ), p (x ), p (x ), w (x ), pw (x ),7 8 3 11 4 12 4 16 4 20

Using forward stepwise procedures with GCV (Eq. MTI(x ), PEAD(x ), DET(x ), Yx(x ),21 23 24 25
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HEAT(x ), CORE(x ), DIP(x ), ION(x ), obtain clearer evidence, the lack of fit test is per-27 29 30 31

LUMO(x ), are included in the linear model. formed.Table 2 lists the analysis of variance32
2The values ofR andF indicate that the relation- (ANOVA) results. TheF ratio is 3.34, clearly larger

ship between retention index and molecular descrip- than 1.95 (thea50.01 level of confidence that there
tors is highly linearly correlated.Fig. 3 shows the is no lack of fit). The significant lack of fit indicates
results of predictions (cross validation) of retention. that the resulting model is inadequate.
The root mean square error of cross validation
(RMSECV) for the models is 5.54. This implies that
the prediction ability for the models built is not bad. 4 .2. Updating the model—step 2
However, further investigation of these results indi-
cates that the model is not good enough yet.Fig. 4a In the second step, modeling the linear model is
shows the residuals for the model. It is seen that first updated by using forward stepwise procedure.
there are many samples with residuals that are larger Each descriptorx (i 5 1, 2, . . . , L) in Eq. (16) isni

than 8 index units, much larger than the normal replaced by a pair of one-sided spline functions of
measurement errors.Table 1describes the prediction itself, if this improves the model. Then, the back-
behavior of a group of compounds. The absolute ward stepwise procedure is performed resulting in
prediction errors are larger than 8 index units. To the equation:

 

Fig. 3. The prediction behavior for the linear model.



162 Q.-S. Xu et al. / J. Chromatogr. A 998 (2003) 155–167

 

Fig. 4. The residual for the models. (a) The linear model. (b) The intermediate model. (c) The TMARS model. (d) The MARS model.

T able 1
The prediction behavior of a group of compounds by four models

aCompound Prediction error

Linear Intermediate MARS TMARS
model model model model

22344m5C5 214.760 26.262 21.329 6.803
2235m4C6 9.937 5.971 10.111 6.228
224m3-3eC5 12.100 9.450 7.965 5.456
22m2-3eC6 8.793 5.285 6.594 4.437
22m2-3eC5 13.528 8.887 5.495 4.906
233m3C5 9.198 9.602 7.898 7.246
2m-3eC7 28.097 29.645 26.383 26.522
3344m4C6 220.747 6.294 29.597 24.851
33m2-4eC6 12.571 9.230 3.575 6.527
3m-3eC7 29.830 210.580 28.817 26.378
4eC7 29.634 25.413 0.120 21.412
4eC8 29.608 25.914 23.157 24.415
4ipC7 213.237 27.844 24.873 23.532
C4 11.152 5.336 0.431 3.209
C5 9.392 4.637 1.355 1.591
Absolute mean 11.506 7.357 5.180 4.901

a 22344m5C5 is 2,2,3,4,4-pentamethylpentane and 224m3-3eC5 is 2,2,4-trimethyl-3 ethylpentane.
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T able 2
ANOVA table for the linear and the intermediate model

Source df SS Mean F ratio
2Linear modelR 50.9994 RMSECV55.54

6 5Regression 17 6.547310 3.851310 14 973
Residual 156 4012.6 25.72
Lack of fit 132 3805.5 28.83 3.34
Pure error 24 207.05 8.63 Significant at

a50.01
6Total 173 6.551310

2Intermediate modelR 50.9995 RMSECV54.86
6Regression 25 6.548310 261 928 12 405

Residual 148 3124.8 21.114
Lack of fit 124 2917.8 23.530 2.73
Pure error 24 207.05 8.63 Significant at

a50.01
6Total 173 6.551310

SS, sum of squares; df, the number of degrees of freedom.

I 5 559.911169.92x 2 2.01x 1 17.29x the group of compounds for which the prediction1 8 11

errors are larger than 8 index units in the linear1 16.65x 2 38.33x 2 0.19x 1 16.76x12 20 21 23 model. Fig. 4b shows the improvement of the
1 143.69x 2 160.34x 2 0.048x25 24 29 residuals visually.

However, the lack of fit test again reveals the2 33.90x 1 165.91x 1 (x 2 3.41)30 31 7 1

inadequacy of the updated model.Table 3 lists the
1 (x 2 3.37) 1 (1072 x ) 1 (x 2 107)3 1 16 1 16 1 ANOVA results. TheF ratio for testing lack of fit is

2R 5 0.9995; F 5 12405; s 5 4.60 (17) 2.73, and is significant ata50.01.
The two-step MARS goes on by expanding, on the

basis of the intermediate model, with basis functionsThis model is called the intermediate model. It is a
two at a time that fit the data best. In this study, thenon-linear model. For the sake of comparison, the
number of basis functions is predefined to be 50. Thecomplexity penalty is used as a criterion to account
complexity of the model is of course too large andfor the degrees of freedom for the MARS regression
would lead to overfitting. Then, a backward stepwisemodel [10]. That is, it is used as the number of
procedure starts to delete the excessive basis func-degrees of freedom based on which the standard
tions one at a time.errors, theF-ratio for overall regressionF and the

First the GCV criterion was used. However, thelack of fit test are calculated.
results obtained were not as good as expected. TheComparing the intermediate model with the linear

3 2 pruned model contains 33 basis functions, which stillone, it is observed that the descriptorsx (x ), k(x )p 3 7

seems excessive. Furthermore, RMSECV for theand w (x ) in the model are replaced by spline4 16

model is 9.41, buts is very low (2.91). Thisfunctions for the same descriptors. The descriptors
indicates that some basis functions in the prunedHEAT(x ) and LUMO(x ), which were present in27 32

model have a negative influence on the prediction(16) are no longer in (17). The number of terms in
ability. They are included into the model only(17) is one less than in (16). Although the value of

2 because they improve the fit of the model. ThisR is a little higher and theF value is smaller, the
typically leads to overfitting, that is, the model fitsimprovement of fit is clear sinces is much smaller.
well, but predicts poorly. The GCV criterion opti-RMSECV is 4.86. This indicates that the prediction
mizes fitting rather than prediction, and therefore theability of the updated model is better owing to better
backward deletion procedure does not removefit. Table 1 lists the improvements in prediction for
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T able 3
ANOVA table for the TMARS and the MARS model

Source df SS Mean F ratio
2TMARS modelR 50.9997 RMSECV54.19

6 5Regression 45 6.550310 1.456310 10 849
Residual 128 1717.3 13.42
Lack of fit 104 1510.2 14.52 1.76
Pure error 24 207.05 8.63 Not significant

at a50.01
6Total 173 6.551310

2MARS modelR 50.9997 RMSECV54.36
6Regression 67 6.549310 97 750 5036.1

Residual 106 2057.5 19.41
Lack of fit 82 1850.5 22.57 2.73
Pure error 24 207.05 8.63 Significant at

a50.01
6Total 173 6.551310

enough basis functions. For the sake of the flexibility RMSECV is 4.19, which indicates that the prediction
of the MARS modeling, the criterion GCV in (7) can ability has been improved.Fig. 4c shows the re-
be replaced by one that minimizes another loss siduals of the model are closer to zero. Furthermore,
function. Cross validation, for instance, would pro- we can see fromTable 1the manifest improvement
vide better prediction performance for the model. by the TMARS model in prediction for the group of
However, it is difficult to use during the forward compounds that are not well predicted by the linear
selection because too many descriptors must be model.
considered, but it can be used in the backward Exploring the model of Eq. (18) provides some
selection where less descriptors are involved. Thus in insight into the nature of these improved results. It
backward stepwise stage, 10-fold cross validation includes basis functions involving four new descrip-

2 3[23] is used after GCV. The model obtained is as tors:x(x ), x (x ), w (x ) and DIP(x ), and it no2 c 4 3 15 29
1 2follows: longer uses the descriptorsx(x ), k(x ), p (x ),1 7 4 12

DET(x ) and ION(x ). The model also contains24 31I 5 372.0521.79x 1 29.55x 2 37.21x8 11 20 five interacting spline functions. These non-linear
2 0.24x 1 48.48(x 24.90) (1072 x )21 2 1 16 1

T able 41 20.22x 2 0.31(4.902 x ) (1072 x )23 2 1 16 1
The prediction behavior of a group of compounds by MARS and

1 118.84x 1 0.09(0.822 x ) (10.742 x ) TMARS25 4 1 30 1

Compound Prediction error2 0.02x 2 114.67(372 x ) (x 2 1.42)29 15 1 20 1

MARS TMARS2 27.79x 1 2.46(x 2 107) (3.482 x )30 16 1 19 1
model model

1 48.33(0.822 x ) 2 29.65(x 20.82)4 1 4 1
2235m4C6 10.111 6.228

2 6.69(1072 x ) 1 6.89(x 2107) 24m2-3ipC5 214.218 24.33316 1 16 1

24m2-4eC6 210.477 25.309
2 21.86(x 2 37) 1 22.55(372 x )15 1 15 1 25m2-3eC6 9.611 6.735

3344m4C6 29.597 24.8511 87.012(x 2 3.37)3 1
34e2C6 213.129 23.893

2R 5 0.9997; F 5 10849; s 5 3.66 (18) 3m-3eC7 28.817 26.378
C16 29.344 1.226
Absolute 10.663 4.869The ANOVA results listed inTable 4 show that
meanthe lack of fit F-ratio51.76 is not significant.
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terms of higher order can tackle the variation in the 2 0.02(1082 x ) (x 1 67.18)16 1 27 1

data set that could not be handled by model (17).
1 2.02(x 2 16.35) (3.862 x )23 1 2 1

2 4.75(1.212 x ) (15.412 x )4 1 22 14 .3. Comparison of MARS and TMARS

1 1.75(4.482 x ) (1.612 x )8 1 20 1

In order to obtain a fair comparison, the MARS
2 25.76(x 2 1.27) (0.862 x )4 1 20 1method is accomplished on the data under the same

conditions. The ANOVA results are shown inTable 2 35.58(x 2 1.27) (x 2 0.86)4 1 20 1

2. The lack of fit test for the MARS model is
2 44.35(2.852 x ) (3.712 x )3 1 32 1significant. The standard errors and RMSECV are
2 1.67(x 2 16.35) (x 2 3.86)4.41 and 4.36, respectively.Fig. 4d shows the 23 1 2 1

residuals for the model. The performance of this
2 0.32(2.852 x ) (4.762 x ) (x 1 50.73)3 1 7 1 27 1model is distinctly better than the linear model and
1 6.53(1.272 x ) (x 2 15.41) (x 2 0.70)the intermediate model.Table 1also shows the clear 4 1 22 1 4 1

improvement by the MARS model for the group of 2R 5 0.9997; F 5 5036.1; s 5 4.41 (19)
compounds that are not well predicted by the linear
model. However, the MARS model is worse than the
TMARS model.Table 4 gives more evidence. The
prediction behavior of this group of compounds is 5 . Conclusion
not acceptable using the MARS model, but it is
acceptable when using the TMARS model. The The proposed modeling method, TMARS, com-
MARS model is shown in Eq. (19). It is more bines linear regression and MARS. It consists of a
complex than the TMARS model. It uses more linear and a nonlinear part. The results show that the
descriptors, more basis functions and higher orders TMARS model performs better than either the linear
of interaction of spline functions, but it does not give or the MARS model.
better results than the TMARS model. Since the In situations where the linear model produces fits
TMARS model is less complex than the MARS with good quality, but still is inadequate, the MARS
model, the former should be preferred model may fail because it is a completely nonlinear

modeling method. TMARS is intermediate between
I 5 912.2711.48(x 2 108) 2 17.78(142 x )16 1 11 1 the two methods, and can be expected to achieve

2 1.36(1082 x ) 2 0.03(25901.92 x ) better results.16 1 28 1

131.06(x 214) 18.38(x 21.21) (x 27)11 1 4 1 12 1

1 18.37(x 2 16.35) 1 25.17(1.212 x )23 1 4 1

A cknowledgements2 15.87(16.352 x ) 1 0.03(x 15901.9)23 1 28 1

2 194.28(6.992 x ) (x 2 4.90)5 1 24 1 The first author is on leave from Hunan Universi-
2 1.98(1.212 x ) (x 1 15.41) ty, China.4 1 22 1
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A ppendix A
Retention table

No. Compound Retention No. Compound Retention No. Compound Retention No. Compound Retention

1 22334m5C5 953.4 45 233m3C5 761.51 89 2m-3eC7 941.00 133 3mC7 772.67
2 2233m4C4 728.69 46 2344m4C6 935.00 90 2m-3eC6 844.75 134 3mC6 676.6
3 2233m4C6 928.80 47 234m3-3eC5 969.40 91 2m-3eC5 762.57 135 3mC9 969.62
4 2233m4C5 855.13 48 234m3C6 850.88 92 2m-3ipC6 915.50 136 3mC12 1270.1
5 22344m5C5 921.70 49 234m3C5 744.31 93 2m-4eC7 907.40 137 3mC5 584.7
6 2234m4C5 821.90 50 234m3C5 754.45 94 2m-4eC6 824.88 138 3mC8 870.35
7 2234m4C5 825.26 51 234m3C5 753.91 95 2m-5eC7 924.00 139 3eC7 867.45
8 2235m4C6 873.30 52 235m3C6 813.05 96 2mC3 365.61 140 3eC6 773.1
9 223m3-3eC5 965.70 53 236m3C7 919.00 97 2mC4 475.00 141 3eC5 686.8

10 223m3C4 641.46 54 23m2-3eC6 949.40 98 2mC4 473.85 142 3eC8 964
11 223m3C7 914.40 55 23m2-3eC5 875.00 99 2mC4 475.41 143 44m2C7 828.71
12 223m3C6 823.30 56 23m2-4eC6 930.60 100 2mC7 764.95 144 44m2C8 918
13 223m3C6 823.16 57 23m2C4 568.80 101 2mC10 1062.3 145 4pC7 906
14 223m3C6 819.74 58 23m2C4 564.92 102 2mC6 667.00 146 4m-3eC7 940.5
15 223m3C5 738.98 59 23m2C4 568.14 103 2mC6 668.12 147 4m-4eC7 937.6
16 2244m4C6 888.60 60 23m2C7 855.34 104 2mC6 666.74 148 4mC7 767.48
17 2244m4C5 774.77 61 23m2C6 760.79 105 2mC9 963.9 149 4mC9 960
18 2245m4C6 872.10 62 23m2C5 672.55 106 2mC12 1264.1 150 4mC12 1258.3
19 224m3-3eC5 903.90 63 23m2C5 671.74 107 2mC5 570.00 151 4mC8 863.30
20 224m3C7 875.70 64 23m2C5 671.00 108 2mC5 571.79 152 4mC8 861.52
21 224m3C6 790.60 65 23m2C8 952.10 109 2mC5 569.93 153 4eC7 857.82
22 224m3C5 691.55 66 244m3C7 889.40 110 2mC8 864.86 154 4eC8 951.5
23 2255m4C6 820.20 67 244m3C6 809.56 111 3344m4C6 983.7 155 4ipC7 925
24 225m3C7 878.10 68 246m3C7 870.10 112 334m3C7 936.6 156 5mC9 957.4
25 225m3C6 777.07 69 24m2-3eC5 838.17 113 334m3C6 855.25 157 5mC12 1252.4
26 226m3C7 873.00 70 24m2-3ipC5 915.10 114 335m3C7 907.7 158 6mC12 1249.9
27 22m2-3eC6 902.10 71 24m2-4eC6 920.70 115 33m2-4eC6 937.8 159 C3 300
28 22m2-3eC5 824.28 72 24m2C7 821.31 116 33m2C7 837.09 160 C4 400
29 22m2-4eC6 881.30 73 24m2C7 829.98 117 33m2C6 744.81 161 C7 700
30 22m2C3 412.73 74 24m2C7 829.80 118 33m2C5 660.39 162 C10 1000
31 22m2C3 410.35 75 24m2C6 732.69 119 33m2C8 932 163 C6 600
32 22m2C4 537.77 76 24m2C5 630.00 120 33e2C6 954.1 164 C9 900
33 22m2C7 816.50 77 24m2C5 625.65 121 33e2C5 880.34 165 C12 1200
34 22m2C7 814.61 78 24m2C5 630.32 122 344m3C7 932.2 166 C16 1600
35 22m2C6 720.17 79 24m2C8 915.80 123 34m2-3eC6 964.6 167 C13 1300
36 22m2C5 626.55 80 255m3C7 891.70 124 34m2C7 859.56 168 C14 1400
37 22m2C8 914.90 81 25m2-3eC6 891.40 125 34m2C6 771.84 169 C15 1500
38 2334m4C6 949.10 82 25m2C7 833.21 126 34e2C6 945.8 170 C11 1100
39 2334m4C5 861.15 83 25m2C6 728.82 127 35m2C7 834.26 171 C5 500
40 2335m4C6 903.30 84 25m2C8 921.80 128 3m-3eC7 953 172 C8 800
41 233m3C7 931.70 85 26m2C7 827.46 129 3m-3eC6 855.42 173 C2 200
42 233m3C6 841.89 86 26m2C8 931.50 130 3m-3eC5 776.13
43 233m3C5 761.86 87 27m2C8 928.50 131 3m-4eC6 856.16
44 233m3C5 752.32 88 2m-33e2C5 984.00 132 3m-5eC7 924
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